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ABSTRACT

We describe several upwinding constrained transport (UCT) methods in this

paper and compare them with the flux-CT method (Balsara & Spicer 1999). The

results show that the divergence-free reconstruction is an improvement only for

low-β plasma, where the pressure positivity becomes a problem. The energy-fix

or pressure correction approach destroys overall conservation and leads to wrong

states for some low-β MHD flows. For other problems, the flux-CT with the

standard reconstruction on cell-centered values works well. This paves a way to

use the dimensional splitting MHD solver for multidimensional problems.

1. Introduction

Many astrophysics problems demands solutions of ideal magneto-hydrodynamics equa-

tions (MHD). There are many numerical techniques to solve MHD equations. In this paper,

we consider a Godunov type of method. Godunov’s method and its various derivatives have

gained increasing popularity in solving the Euler equations of hydrodynamics (HD) due to

their robustness and ability to achieve high resolution near discontinuities. Central to these

methods is the exact or approximate solutions of the Riemann problem (Riemann solver). In

the last decade, several Godunov methods for HD have been extended to MHD flow. These

methods conservatively update the zone-averaged or grid-centered fluid and magnetic field

states based on estimated advective fluxes of mass, momentum, energy and magnetic field

at grid interfaces using solutions to the Riemann problem at each interface. MHD examples

include Brio and Wu (Brio & Wu 1998), Zachary et al. (Zachary et al. 1994), Dai and

Woodward (Dai & Woodwood 1994, 1998), Powell (Powell 1994), Ryu and Jones (Ryu &

Jones 1995), Roe and Balsara (Roe & Balsara 1996), and Balsara (Balsara 1998), etc..

The MHD flow has an implicit constraint ∇ ·B = 0. The feature of upwinding schemes

that use the cell-centered quantities to estimate fluxes at the cell interfaces makes enforcing
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the constraint non-trivial. There are several approaches to handle this problem. Powell et

al. (Powell et al. 1999) used a scheme of Powell (Powell 1994) to add a source term that is

proportional to ∇·B to the original set of MHD equations. By that way any local ∇·B that

is created is convected away. This approach leads to the Riemann problem which has an

eight-wave structure. Recently, Janhunen (Janhunen 2000) formulated various arguments

to add the ∇ · B related source term only to the induction equation, which restores the

momentum and energy conservation. Yet another approach has been proposed by Dedner et

al. (Dedner et al. 2002) to damp the divergence errors while convecting it away by adding

diffusion to the hyperbolic convection of the ∇ ·B. Toth (Tóth 2000) pointed out that the

eight-wave formulation can lead to incorrect jump conditions across strong shocks in the

numerical solutions.

The projection method proposed in (Brackbill & Barnes 1983) has been widely used by

many authors (e.g., (Jiang & Wu 1999)). However, the projection involves the solution of

a Poisson equation and also restricts the choice of boundary conditions. Another way to

keep ∇ ·B exactly zero is to rewrite the MHD equations in terms of vector potential A and

define the magnetic field as B = ∇×A. A disadvantage of this approach is that the order of

spatial derivatives increases by one, which reduces the order of accuracy by one (see (Evas&

Hawley 1989) for more details).

The constrained transport (CT) method by Evans and Hawley (Evas& Hawley 1989) is

another approach to keep ∇ ·B to the accuracy of machine round-off error. This approach

has been combined with various shock-capturing schemes by many authors (DeVore 1991;

Dai & Woodwood 1998; Ryu et al. 1998; Balsara & Spicer 1999; Londrillo& Del Zanna 2000).

The original CT method used a staggered grid which places the magnetic field variables in

the face center and the rest in the cell-center. The divergence-free finite-difference scheme

can be easily constructed for the staggered grid (see Yee (Yee 1966)). Toth (Tóth 2000)

introduced a finite-volume interpretation of the CT schemes that place all of the variables

at the cell center. However, this idea is difficult to apply to an adaptive mesh refinement

mesh. In this paper, we adopted a CT approach, which is similar to the one of (Balsara

& Spicer 1999), implemented on the staggered grid. As in Toth (Tóth 2000), we called it

flux-CT approach.

As other CT methods, the key step in flux-CT method is to evaluate the electro-motive-

force (EMF, defined via E = v ×B) at the nodes for 2D or at the edge-centers for 3D

problems. The flux-CT method of (Balsara & Spicer 1999) exploited the duality between

the upwind fluxes of the Godunov scheme and EMF in a plasma, and obtained the EMF via

averaging the available related upwind fluxes. It can be easily implemented in any Godunov

scheme. Toth (Tóth 2000) found the flux-CT was one of the most accurate second order

schemes that he tested.

Balsara (Balsara 2003) raised four issues regarding to the improvement of the flux-CT

scheme of (Balsara & Spicer 1999) and proposed some numerical schemes to solve it. First
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the volume averaging cell-centered magnetic fields can be obtained uniquely by using the

face-averaging face-centered magnetic fields. The simple arithmetic averaging is not optimal.

Second, the divergence-free reconstruction of (Balsara 2000) can be used to evaluate the face-

centered magnetic field components directly without using the limited cell-centered magnetic

fields. Third, the continuity of the normal component of the magnetic field at cell-interface

can be preserved by using the divergence-free reconstruction of (Balsara 2000), and hence

eliminate the jump in the normal component and the need for the eight wave model of

(Powell 1994). Finally, The EMF at the edge center (or nodes for 2D) can be evaluated

directly at that point without averaging procedure. This is achieved by introducing more

quadrature points located at the edge center and solving more Riemann problems.

These four issues also pertain to other CT schemes. A similar scheme, called upwinding

constrained transport (UCT), was proposed in (Londrillo & Del Zanna 2003). UCT used a

similar reconstruction to (Balsara 2000) to preserve the divergence-free condition of the face-

centered values and evaluate the EMF upwindly and directly by using a four-state Riemann

solver.

We will discuss and compare the numerical schemes of (Balsara 2003) and (Londrillo &

Del Zanna 2003) in this paper. The outline is as follows. In Section 2, we review the schemes

of (Balsara 2003) and (Londrillo & Del Zanna 2003). In Section 3 we unify the schemes and

propose the implementations for our MHD solver. In Section 4, several examples are given to

compare the modified schemes with the original flux-CT scheme of (Balsara & Spicer 1999).

2. Upwinding Constrained Transport Method

For the sake of simplicity, we will restrict our discussion for a two-dimensional uniform

Cartesian grid with slab symmetry in the 3rd direction. Bx and By are face-centered values

and satisfy the divergence-free condition. All of the other components are cell-centered values

and updated by the Godunov scheme. Generalization to 3D is quite trivial. For the sake of

clarity, the cell-centered representation of the magnetic field will be denoted by capital B,

while the face-centered representation by lower case b in the difference formula.

2.1. Flux-CT

We first describe the constrained transport method and the flux-CT scheme of (Balsara

& Spicer 1999). The CT method by Evans and Hawley (Evas& Hawley 1989) applied a

staggered grid to maintain the divergence-free constraint for finite-difference schemes. The

magnetic fields are represented on the cell interfaces. In 2D, the bx and by are shown in

Fig.2.1. The main idea of the CT scheme is to place the electric field E at the nodes.The
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Fig. 2.1.— (a) Staggered grid and constrained transport in 2D. The interface centered fields bx and by are

advanced by finite differencing of the electric field E located at the nodes. (b) The notation used for the

reconstruction inside the cell. Fluxes are either defined as two-state functions located at cell-interfaces or a

four-state function located at the nodes.

induction equation is then discretized by Yee’s method (Yee 1966) as
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It is easy to verify that the numerical divergence of b at the cell-center, defined by

(∇ · b)i,j =
(bx)i+ 1

2
,j − (bx)i− 1

2
,j

∆x
+

(by)i,j+ 1

2

− (bx)i,j− 1

2

∆y

is preserved during the time integration. Therefore, if ∇ · b = 0 holds initially, it holds

forever to the accuracy of round-off errors.

Many CT schemes have been proposed (see (DeVore 1991; Dai & Woodwood 1998;

Ryu et al. 1998; Balsara & Spicer 1999; Londrillo& Del Zanna 2000)). The main difference

between them is how to obtain the EMF E. Toth (Tóth 2000) has compared several CT

schemes and found the flux-CT of (Balsara & Spicer 1999) is one of the most accurate. In

(Balsara & Spicer 1999), Balsara and Spicer combined the CT approach with an arbitrary

Godunov type base scheme by interpolating appropriately the signed cell-interface upwind
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fluxes F x and F y into the EMF at the node,

Ei+ 1
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2

). (2)

Since all of the four fluxes have been available in the upwind step of a Godunov-scheme, the

flux-CT is easy to implement without involving much extra computation.

In (Balsara & Spicer 1999), Balsara and Spicer also described a variant of their scheme,

which used an upwind interpolation for (2) in the vicinity of magneto-sonic shocks according

to the direction of the local pressure gradient, which is

Ei+ 1

2
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= 0.5ψ(−F x
i+ 1
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− F x
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) + 0.5(1− ψ)(F y

i,j+ 1

2

+ F y

i+1,j+ 1

2
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where ψ = ∆Px/(∆Px+∆Py) is a ratio between the gradient in x-direction and total gradient.

By this variant, the 2D scheme can be reduced to 1-D scheme near the shock if the shock

aligns with one of the coordinate axes. However, it does not have significant improvement

for other cases (Balsara & Spicer 1999).

Flux-CT works quite well for many problems (see (Balsara & Spicer 1999; Tóth 2000)).

However, it can cause negative pressure for a low-β (β = 2p/(B2)) MHD flow. Similar

to the energy fix for the projection method, Balsara and Spicer (Balsara & Spicer 1999)

proposed a fix to correct the energy density for the new magnetic field. That is, if Bn+1
c is

the cell-centered value obtained by advancing the field directly using the high order Godunov

scheme, and Bn+1

fc is the new cell-centered values obtained by averaging the face-centered

values bn+1 to the cell-center, then the energy density is corrected as

enew = eold +
1

2

(

(Bn+1

fc )2 − (Bn+1
c )2

)

. (4)

As pointed out in (Balsara & Spicer 1999), this step is an optional step. It results in a

slight loss of total energy conservation at the level of discretization error. Many real work

applications and test problems (see (Balsara & Spicer 1999; Tóth 2000)) do not need this

step. However, it proves to be useful to maintain a positive pressure for a low-β MHD flow.

In Section 4, we will find out that the deviation of the numerical solution from the true

solutions depends highly on the difference between the numerical enew and the conservative

energy. Eq. (4) should be used cautiously.

Although the divergence-free condition is preserved after each CT step, the numerical

monopoles are still produced in the upwind step of the Godunov method. This is because

the upwind reconstruction is based on the cell-centered values of the magnetic field, which is

usually obtained via the arithmetic averaging by many practitioners (see (Dai & Woodwood

1998; Ryu et al. 1998; Balsara & Spicer 1999)),

Bx,i,j =
1

2
(bx,i− 1

2
,j + bx,i+ 1

2
,j, (5)

By,i,j =
1

2
(by,i,j− 1

2

+ bx,i,j+ 1

2

. (6)
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Also, the normal component of the magnetic field obtained from the reconstruction may be

not continuous at the cell interfaces in each direction for a multidimensional problem, which

means that the eight-wave model of (Powell 1994) might be needed.

In this paper, we use the flux-CT as our basic CT scheme. We will test its several

variants, including the energy fix (4).

2.2. Modified Flux-CT

The modified flux-CT was proposed in (Balsara 2003). First, The cell-interface values

of the magnetic field is evaluated directly from the divergence-free monotonicity preserving

reconstruction of the face-centered values of b. The reconstruction polynomial for the 2D

Cartesian grid is

bx(x, y) = a0 + axx+ ayy + axxx
2 + axyxy + ayyy

2, (7)

by(x, y) = c0 + cxx+ cyy + cxxx
2 + cxyxy + cyyy

2, (8)

where the coefficients are defined by

ay =
1

2
(∆yb

+
x +∆yb

−
x ), (9)

cx =
1

2
(∆xb

+
y +∆xb

−
y ), (10)

axy = −2cyy =
∆yb

+
x −∆yb

−
x

∆x
, (11)

cxy = −2axx =
∆xb

+
y −∆xb

−
y

∆y
, (12)

a0 =
b+x + b−x

2
− axx

∆2x

4
, (13)

c0 =
b+y + b−y

2
− cyy

∆2y

4
, (14)

where ∆ybx and ∆xby are the limited slope of bx along the y-direction and by along the

x-direction at the cell-interfaces, b+ represents the value at the right or top face and b−

represents the value at the left or bottom face. We should point out that although (7) and

(8) are quadrature polynomials, the reconstruction is of only the second order accuracy.

A direct integration of (7) and (8) over the whole cell yields the cell-centered volume-

averaging value of b, which is

Bx =
b+x + b−x

2
− axx

∆2x

6
(15)

By =
b+y + b−y

2
− cyy

∆2y

6
(16)
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It is clear that for a second order scheme, the second term in Bx and By can be neglected,

by which the (15) and (16) are reduced to Eqs. (5) and (6).

Balsara pointed out in (Balsara 2003) that the (15) and (16) are important in maintain-

ing a positive pressure for strong shocks moving through low-β plasmas. However, we will

find out in Section 4 that this may not be true for our MHD solvers. The energy fix (4) is

more important and necessary than the (15) and (16) in those cases.

The divergence-free reconstruction is designed so that the interpolation polynomials

bx(x, y) and by(x, y) naturally match bx and by at the cell-interfaces. Therefore, the divergence-

free condition of the cell-interface values is automatically preserved, and the normal com-

ponent of the magnetic fields is continuous at the cell-interfaces. No eight-wave model of

(Powell 1994) is needed.

The limiters are applied directly to the face-centered values in the reconstruction bx(x, y)

and by(x, y). Several limiting strategies have been proposed in (Balsara 2003). In the nu-

merical tests of Section 4, we adopt a fast TVD limiting (Balsara 2003), which is defined

by

∆ybx,·,j = Limiter

(

bx,·,j+1 − bx,·,j
∆y

,
bx,·,j − bx,·,j−1

∆y

)

(17)

∆xby,i,· = Limiter

(

by,i+1,· − by,i,·
∆x

,
by,i,· − by,i−1,·

∆x

)

, (18)

where limiter represents one of the minmod, monotonic-central, or van Leer limiter.

The original flux-CT method calculated the EMF via spatial averaging in (2). Balsara

(Balsara 2003) proposed yet another approach to evaluate the flux (EMF) directly at the

nodes of the grid. Consider the EMF at node (xi+ 1

2

, yj+ 1

2

). We can obtain four states at

the node from the reconstruction of the cell-centered values located at (xi, yj), (xi+1, yj),

(xi+1, yj+1) and (xi, yj+1). Four Riemann problems are solved to obtain the flux at the

specific node. Since the flux is evaluated at the node, no spatial interpolation is needed

to obtain the EMF. Note that more Riemann problems need to be solved (about twice as

many as that of the original face interface-centered approach). It is debatable if this more

computational effort is worth for the accuracy it obtains. In Section 4, we will see that for

a second order method, more Riemann problems solved do not mean more accuracy gained.

2.3. Upwind Constrained Transport

Londrillo and Del Zanna recently proposed a similar approach to advance the magnetic

fields, which is called upwind constrained transport (UCT) method.

The reconstruction of the magnetic field uses the cell-centered values and is the same

as for other cell-centered components, except that the slopes of the magnetic field in the
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normal direction of the interfaces are calculated differently. The implementation of UCT

is as follows. First the cell-centered magnetic fields are obtained via arithmetic averaging.

Then the reconstruction for the cell-centered values is obtained as

Bx(x, y) = Bx +∆x(bx)(x− xj) + ∆y(Bx)(y − yj), (19)

By(x, y) = By +∆x(By)(x− xj) + ∆y(by)(y − yj), (20)

where ∆y(Bx) and ∆x(By) are the limited slopes of B field, ∆x(bx) and ∆y(by) are obtained

directly by central differencing of b field at the cell-center. It can be easily verified that the

divergence-free condition

∆x(bx) + ∆y(by) = 0

is preserved by the reconstruction.

In the upwind step, the cell-centered components are advanced by the Godunov scheme.

The numerical flux is usually obtained by a Riemann solver. Suppose the left and right states

of the Riemann problem is UR and UL, then the numerical flux can be written as

F (UR, UL) =
1

2
(F (UR) + F (UL))− φ,

where the first term expressing the smooth component leads to a centered two-point formula

in flux differentiation and the second is a dissipation term coming from the upwind procedure.

The face-centered components (magnetic fields) are advanced with the staggered method.

The EMF is evaluated by a linear combination of 1-D upwind fluxes along the intersecting

direction, since a same flux component at the same collocation point results to have two

independent representations in terms of characteristic wave fans. The EMF at each node

can be evaluated as a four-state flux function (see Fig.2.1). To preserve the continuity and

upwind properties along each direction, EMF is constructed as

E(UE, UW , US, UN) = Eavg − φy + φx, (21)

where the first term expressing the smooth part can be evaluated by a centered four-point

formula, e.g.,

Eavg =
1

4
(ENE + ESE + ENW + ESW ),

the second term coming from the upwind procedure of the Riemann solver can be evaluated

by spatial averaging,

φx =
1

2
(φNx + φSx), φy =

1

2
(φEy + φWy ).

Londrillo and Del Zanna (Londrillo & Del Zanna 2003) proposed two schemes with

respect to two Riemann solvers to evaluate E(UE, UW , US, UN ) efficiently. In the first based

on Roe’s type scheme, the smooth term can be evaluated as

(Eavg)i+ 1

2
,j+ 1

2

= −1

2
[(v̂xby)i+1 + (v̂xby)i]j+ 1

2

+
1

2
[(v̂ybx)j+1 + (v̂ybx)j]i+ 1

2

, (22)
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where (v̂x)i,j+ 1

2

= 1

2
[(vx)j+(vx)j+1]i, and (v̂y)i− 1

2
,j =

1

2
[(vy)i+(vy)i+1]j. The dissipative terms

can be evaluated as a two-point average,

(φx)i+ 1

2
,j+ 1

2

=
1

2
[(φx)j + (φx)j+1]i+ 1

2

,

(φy)i+ 1

2
,j+ 1

2

=
1

2
[(φy)i + (φy)i+1]j+ 1

2

. (23)

Since the four contributes of φ are already obtained from the Riemann solver, (23) can be

easily implemented.

The second scheme are based on the HLLE Riemann solver, or so-called central-type

schemes. The smooth term is evaluated as

Eavg =
α+
x α

+
y E

NE + α+
x α

−
y E

SE + α−
x α

+
y E

NW + α−
x α

−
y E

SW

(α+
x + α−

x )(α
+
y + α−

y )
, (24)

and the dissipative terms are evaluated as

φx =
α+
x α

−
x

α+
x + α−

x

(bWy − bEy ), φy =
α+
y α

−
y

α+
y + α−

y

(bSx − bNx ) (25)

where the α±
x and α±

y are the maximum characteristic speeds among the four reconstructed

states at the node. For LLF fluxes, α+
x = α−

x = αx and α+
y = α−

y = αy, the scheme can be

reduced to

Eavg =
1

4
(ENE + ESE + ENW + ESW ), (26)

φx =
1

2
αx(b

W
y − bEy ),

φy =
1

2
αy(b

S
x − bNx ), (27)

3. General UCT Scheme and its Variation

The above described schemes can be unified and characterized by using control param-

eters. The main difference of the different CT schemes is on the evaluation of EMF. As

mentioned in Section 2.3, we can write the EMF into two parts: smooth and dissipative

part, which is

E(UE, UW , US, UN ) = Eavg − φE = Eavg − cφ · (φy − φx), (28)

where cφ is a constant coefficient.

There are several ways to evaluate the smooth part Eavg. The transport flux-CT

method of Ryu et al. (Ryu et al. 1998) evaluated it as a spatial averaging over four cell-

centered points, which is

(Eavg)i+ 1

2
,j+ 1

2

=
1

4
(Ei,j + Ei,j+1 + Ei+1,j + Ei+1,j+1). (29)
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The original flux-CT scheme of (Balsara & Spicer 1999) evaluated it as a spatial averaging

over eight values obtained at the cell-interfaces, which is

(Eavg)i+ 1

2
,j+ 1

2

= 1

8
( E+

i,j+ 1

2

+ E−
i,j+ 1

2

+ E+

i+1,j+ 1

2

+ E−
i+1,j+ 1

2

+

E+

i+ 1

2
,j
+ E−

i+ 1

2
,j
+ E+

i+ 1

2
,j+1

+ E−
i+ 1

2
,j+1

). (30)

It is clear that (30) and (29) are identical if a piecewise-constant reconstruction is used.

Londrillo and Del Zanna (Londrillo & Del Zanna 2003) evaluated Eavg as a two-part com-

bination in Eq.(22) and as an average state over the Riemann fan in Eq. (24). Balsara

(Balsara 2003) evaluated it as an averaging over four possible values at the nodes, which is

(Eavg)i+ 1

2
,j+ 1

2

= 1

4
[ E(USE

i+ 1

2
,j+ 1

2

) + E(USW
i+ 1

2
,j+ 1

2

) +

E(UNE
i+ 1

2
,j+ 1

2

) + E(UNW
i+ 1

2
,j+ 1

2

)], (31)

where Ua,b

i+ 1

2
,j+ 1

2

with a = N,S, b = E,W are obtained through the reconstruction.

In term of the computational effort for a general second-order Godunov scheme, (30)

is readily available from the Riemann solver at the cell-interfaces. However, (29), (22) and

(31) need some extra computation to evaluate E at some specific points. (31) requires

the most computation because it also needs the reconstruction at the cell-corner from four

cell-centered values.

Different schemes evaluated the second term φE of (28) differently. It can be either

obtained from the Riemann solver or evaluated directly via (25) or (27). One of the big

differences is in the coefficient cφ. If the fluxes are obtained at the center of face-interfaces,

φE is evaluated as

φE = cφ(φ
W
y + φEy − φSx − φNx ). (32)

In (Balsara & Spicer 1999), cφ = 0.25, Eq.(32) becomes

φE =
1

4
(φWy + φEy − φSx − φNx ). (33)

In Ryu et al. (Ryu et al. 1998) and Londrillo and Del Zanna (Londrillo & Del Zanna 2003),

cφ = 0.5, Eq.(32) becomes

φE =
1

2
(φWy + φEy − φSx − φNx ). (34)

As we can see, there is a factor of 2 difference between different cφs. The scheme (34) has

a nice property that it reduces to the correct 1-D flux for problems aligned with one of the

coordinate axes or diagonals. This property does not hold for (33). However, as we will see

from the numerical results in section 4, the excessive dissipation of (34) may not be good for

a general 2D problem.

If the fluxes are obtained at the corners of the cells, φE is evaluated as

φE = cφ(φ
NW
y + φNE

y − φSWx − φSEx ). (35)

The modified flux-CT method (Balsara 2003) uses cφ = 1/4.
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4. Numerical Experiment

In this section, we compared the divergence-free reconstructions and several UCT schemes

with the original flux-CT method. One of the disadvantages of the divergence-free recon-

struction is that it cannot be used in a dimensional splitting solver. This is because at each

intermediate stage in a time step, the divergence-free condition may not be held and it is also

impossible to use the Yee’s method to the face-centered magnetic field at each intermediate

stage. Therefore, an unsplit version of our MHD code is used. Our code has been described

in details in (Li & Li 2003). It contains several Riemann solvers (HLL, HLLC, Roe’s and

Hybrid) and several reconstructions, which includes the divergence-free reconstructions of

(Balsara 2003) and (Londrillo & Del Zanna 2003). To have a consistent comparison, we use

the van Leer limiter whenever the limiter is needed during the reconstruction.

The main computational steps of our unsplit MHD solver consist of: a reconstruction

procedure based on the primitive variables, a Riemann solver to calculate the flux at the cell-

interfaces, a spatial averaging to calculate the EMF at the cell-corners, and a second-order

Runge-Kutta time integration.

We want to compare two things. First how different divergence-free reconstructions

affect the numerical results. As we have mentioned the divergence-free reconstruction has

two advantages: it removes the numerical monopole in the Riemann-solver and it removes

the jump of the magnetic field at the cell-interface in the normal direction and eliminates

the need of the eight-wave model of (Powell 1994). However, one of the disadvantages is that

the slope of the magnetic field is not limited along the normal direction and may introduce

oscillations.

Since the divergence-free reconstruction (7) and (8) leads to the volume-average mag-

netic field at the cell-center. We want to know how the volume-average magnetic field at the

cell-centered affect the numerical results. Does it preserve the pressure positivity without

the energy-fix step?

Secondly, we we want to compare different UCT schemes: different smooth term evalu-

ation combined with different dissipative term evaluations.

The time step is determined adaptively according to the current wave speed and CFL

number. Without specification, CFL=0.7 is used. The computation is done on our Linux

PC with 1.7GHz AMD Athlon processor. Whenever the parallel computation is needed, it

is done on a four-processor cluster with 1.2GHz AMD Athlon processor.
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4.1. Rotated shock-tube problems

These test problems involve the propagation of discontinuities defined by usual 1-D

shock-tubes on a 2-D computational plane, and have been tested by many authors (see (Brio

& Wu 1998; Ryu & Jones 1995; Balsara 1998; Tóth 2000; Falle 2002; Londrillo & Del Zanna

2003) for more details). The initial left and right states of the four shock-tube problems

considered here are listed in Table 1. The first shock-tube problem ST-1 is a coplanar 2D

Table 1: Initial left (L) and right (R) states for the rotated shock tube problem

ρ v‖ v⊥ vz p B‖ B⊥ Bz

Test ST-1: L 1 10 0 0 20 5/
√
4π 5/

√
4π 0

Test ST-1: R 1 -10 0 0 1 5/
√
4π 5/

√
4π 0

Test ST-2: L 1.08 1.2 0.01 0.5 0.95 2/
√
4π 3.6/

√
4π 2/

√
4π

Test ST-2: R 1 0 0 0 1 2/
√
4π 4/

√
4π 2/

√
4π

Test ST-3: L 1 0 0 0 1 0.75 1 0

Test ST-3: R 0.125 0 0 0 0.1 0.75 -1 0

Test ST-4: L 0.5 0 2 0 10 2/
√
4π 2.5/

√
4π 0

Test ST-4: R 0.1 -10 0 0 0.1 2/
√
4π 2/

√
4π 0

problem with an initially uniform magnetized background. The second problem ST-2 is a

2.5D problem with nonzero bz and vz which involving Alfvénic wave propagation. The third

one ST-3 is a Riemann problem contains a slow compound structure. The fourth one ST-4

is a coplanar Riemann problem with a relatively low-β (β = 0.16 behind the fast shock).

We have tested these problems with different angles between shock interface and the

y-axes. α = 45◦ and α = tan−1 2 ≈ 63.4◦ are used. The final times tmax are 0.08, 0.2, 0.1, and

0.06 respectively. For an angle α, the final time becomes tmax cos(α). As suggested by Toth

(Tóth 2000), the computational domain for the rotated shock-tube tests may be reduced to

a narrow strip N × 2 grid. Periodic shifted boundary conditions in y-direction are applied.

In our tests, N = 400 is used, which is compared with a reference solution computed with

N = 1600 and α = 0.

To quantify the numerical error, we calculate an L1 error as follows. First we obtain a

reference solution of 400 nodes by averaging the solutions of N = 1600 over each coarse cell.

Then the difference between the numerical solutions and reference solutions is calculated.

Finally, the error is calculated as

Err =
Nu
∑

i=1

N
∑

j=1

|∆uij|
max
j
|ui| , (36)

where ui is only for the cell-centered variables.
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Since the CT method can preserve the divergence of the magnetic field, it is important

to set the initial magnetic field to be divergence-free. ST-1 has a constant b field initially

and hence for any locally spacing of ∆x and ∆y, the divergence-free condition is satisfied.

For the other three problems, there is a jump in By field. The easiest way to set up an initial

divergence-free magnetic field is to align the shock interface along the diagonals of the cell,

which is equivalent to have ∆x = tanα∆y. We have verified that when ∆x = tanα∆y is

satisfied , both the ∇ ·B = 0 and B‖=constant hold within machine accuracy.

For general grid spacing and α, we can first obtain the potential field A at each node

from the given value of magnetic field B‖ and B⊥, and then obtain the Bx and By at the

cell-interfaces via the central differencing of A. In this approach, A must be defined in a

way that it has unique value at each node no matter which integration path is used. For

α = tan−1 2 and ∆x = ∆y, we used another simple approach, which is illustrated in Fig.4.2.

We can see that BL
x , B

R
x , B

L
y , and B

R
y can be obtained directly from the constant states of

B
||
 

B⊥ B
x
L 

B
y
L 

B
y
L*

B
y
R* 

B
x
R 

B
y
R 

B
x
L* B

x
R* B

x
*  

Shock interface 

(a) 
(b) 

(c) 

(d) 

Fig. 4.2.— Initial magnetic field for oblique shock-tube problem with α = tan−1 2 and ∆x = ∆y. (a) and

(c) are quadrilaterals with an edge shared with the shock interface. (b) and (d) are triangles with an edge

shared with the shock interface.

B‖ and B⊥. B
∗
x can be defined as B∗

x = 1

2
(BL

x + BR
x ). The other quantities (BL∗

x , BR∗
x , BL∗

x ,

and BR∗
x ) can be calculated by the divergence-free condition in each quadrilateral or triangle,

which yields

BL∗
x =

B‖

sinα
+

1

2
BL
x −BL

y ,

BR∗
x =

B‖

sinα
+

1

2
BR
x −BR

y ,

BL∗
y =

B‖

sinα
− 1

2
BL
x ,
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BR∗
y =

B‖

sinα
− 1

2
BR
x .

The magnetic field at other positions can be obtained by the continuity along the traverse

direction η = y cosα − x sinα. It can be verified easily that the ∇ · b = 0 in each local

cell. We should point out that although ∇ · b = 0 holds within machine round-off error, the

conservation of the B‖ is accurate only to trunction errors at best (see Tóth (2000)).

4.1.1. Tests for different reconstructions

We first test these problems by using the flux-CT scheme (Balsara & Spicer 1999) with

different reconstructions on the magnetic fields. The first, which we denote as BS, is the

reconstruction based on cell-centered value of B with limited slopes in both x and y direction.

B is calculated by arithmetic averaging. The second, denoted as BS2, is the reconstruction

based on B but with different slopes in normal direction. (19) and (20) will be used and

the cell-centered values are calculated by arithmetic averaging. The third one, denoted as

BS3, is a fully divergence-free reconstruction based on face-interface value of b (Balsara

2000), where (7) and (8) are used. BS3 also implies that the volume-averaging values of the

cell-centered B, defined by (15) and (16), are used in the reconstruction.

Fig.4.1 shows the results for ST-1. In order to see the difference between these recon-

structions, Only a “zoomed” part from a whole plot is shown. The plots for other shock-

tube problems are also zoomed. We should point out that although the results for the angle

α = tan−1 2 and ∆y = 0.5∆x are not shown here, they are almost the same as those in

Fig.4.1. This feature, which is also shared by other shock-tube problems, means that it does

not matter much how oblique the shock is as long as the parallel-component of the magnetic

field is preserved. The results shows that BS3 is more dissipative near the slow rarefaction,

slow shock, and the contact discontinuity. The results of BS2 coincide with those of BS very

well. The numerical error w.r.t. the reference solutions is listed in Table 2.

The results for ST-1 with α = 63.4◦ and ∆y = ∆x are shown in Fig.4.2. B‖ has some

errors around the true solution and the slow rarefaction is poorly resolved. It is interesting

to note that the three reconstructions gave almost the same results.

Figs.4.3 and 4.4 show the results for ST-2. For both angles, the three reconstructions

gave almost the same results. Figs.4.5 and 4.6 show the results for ST-3. From Fig.4.5, we

see again that the BS3 is more dissipative than BS and BS2. It reflects on the resolution of

compound structure and fast rarefaction. Both BS and BS2 have overshoot at the rarefaction

(see the plot of v‖ in Fig.4.5) which BS3 does not have. As regards to the slow compound,

for both angles, the BS is the best among the three reconstructions. We see oscillations for

BS2 and BS3 scheme. BS3 has larger error than both BS and BS2 schemes.The oscillations

might be due to the unlimited slope of the magnetic fields in the normal direction.



– 15 –

0.45 0.5 0.55 0.6 0.65

4

4.5

5

5.5

x

B
⊥

BS
BS2
BS3
Reference

0.45 0.5 0.55 0.6 0.65
0.7

0.705

0.71

0.715

0.72

0.725

0.73

x

v ||

0.45 0.5 0.55 0.6 0.65
−0.4

−0.2

0

0.2

0.4

x

v ⊥

0.45 0.5 0.55 0.6 0.65
143

144

145

146

147

148

149

150

151

x

pr
es

su
re

Fig. 4.1.— Results for shock-tube problem ST-1. Only a “zoomed” part from a whole plot is shown. The

angle between the shock interface and y-axes is α = 45. Output is at t = 0.08/
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Table 2: Numerical errors for the four rotated shock-tube problems.
α reconstruction ST-1 ST-2 ST-3 ST-4

BS 0.0161 0.0143 0.0215 0.0433

45◦ BS2 0.0161 0.0146 0.0235 0.0082

BS3 0.0259 0.0148 0.0326 0.0081

BS 0.0176 0.0138 0.0219 0.0254

63.4◦ BS2 0.0177 0.0139 0.0209 0.0131

∆y = 1

2
∆x BS3 0.0279 0.0140 0.0282 0.0112

63.4◦ BS 0.0339 0.0268 0.0402 0.0388

∆y = ∆x BS2 0.0337 0.0260 0.0378 0.0203

BS3 0.0344 0.0262 0.0367 0.0264

Figs.4.8 and 4.9 show the results for ST-4. Due to a low-β, the flux-CT cannot be run

without the energy fix (4) for both angles. It did run for α = 0, Therefore we can obtain

the reference solution correctly without the energy fix. For both angles, BS generated wrong

state for density between the contact and the right slow shock, while BS2 and BS3 obtained

almost the same results. We also observed that the wrong state is highly related to the

energy deviation from the true energy. Fig.4.7 shows the plot of the energy versus time for

α = 45◦.

We had tested this problem for α = 0, for which the numerical magnetic monopole does

not exist, with and without energy-fix. BS and BS2 generated exactly the same results while

the result for BS3 is slightly different. For all the three schemes, the energy-fix behaves

badly even if the upwinding interpolation (3) near the magneto-sonic shock is used. Fig.4.10

shows the results for α = 0. Although the results with upwinding interpolation (3) are better

than those without, the wrong state is still there. It disappears when (3) is used with ψ = 1

throughout the region, which leads to the EMF exactly the same as that for the 1D problem.

The reason why the wrong state is almost unnoticeable for BS2 and BS3 for both nonzero αs

is that the EMF evaluation (2) is closer to the true EMF of the 1D problem than for α = 0.

As noticed, the results are better in Fig.4.8 for α = 45◦ than in Fig.4.9 for α = tan−1 2,

because (2) is more accurate for α = 45◦ than for α = tan−1 2.

We believe that the wrong state in the density of ST-4 is due to the energy-fix, because

many schemes (e.g. HLLE or hybrid scheme) for ST-4 without using the CT scheme and the

divergence-cleaning does not have this wrong state. For the CT schemes, the magnetic field

is not obtained directly from the Godunov scheme and the energy-fix is needed to ensure the

pressure positivity. Because of the numerical errors in evaluating the EMF, the energy-fix

does not preserve the original total energy. This might be one of the disadvantages of the

CT method. The numerical magnetic monopole (e.g., for BS with nonzero α) amplifies the

effect of the energy-fix. The numerical results also imply that the evaluation of EMF plays
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Fig. 4.7.— Results for shock-tube problem ST-4. α = 45◦. Output is at t = 0.06. The energy difference

is due to the energy fix (4).

an important role when the energy-fix is used.

The volume-averaging cell-centered values and the divergence-free reconstruction based

on b does improve the results a little bit for both nonzero angles (see the numerical error

for BS3 in Table 2), but not good enough to eliminate the need of the energy-fix. For α = 0,

the results (see Fig.4.10) are even worse for BS3.

4.1.2. Tests for different UCT schemes

Next we test how different UCT schemes compared with the original flux-CT scheme of

(Balsara & Spicer 1999). We have tested four schemes, flux-CT of (Balsara & Spicer 1999),

modified flux-CT of (Balsara 2003), the transport flux-CT scheme of (Ryu et al. 1998), and

the UCT schemes of (Londrillo & Del Zanna 2003). These UCT schemes can be unified by

written them as (28) with different smooth parts and dissipative parts. We have described

five approaches to evaluate Eavg and three approaches to evaluate the dissipative term φ.

There are 15 possible combinations. However, some combinations are not efficient and will
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Fig. 4.9.— Results for shock-tube problem ST-4. α = tan−1 2. ∆y = 0.5∆x. Output is at t = 0.06/
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not be tested here.

Since the φ term (32) is readily available from the upwind step of a Godunov method,

we first test it against different Eavg evaluations, among which four of them will be tested:

Eq.(22) denoted as E1, Eq.(29) denoted as E2, Eq.(30) denoted as E3, and Eq.(31) denoted

as E4.

The results for ST-1 with α = 45◦ are shown in Fig.4.11. As the previous plots, only

the zoomed part of the results is shown. It is clear that the basic flux-CT method (E3 with

cφ = 0.25) is the best among all of the tests (see also the numerical errors in Table 3).

Fig.4.12 shows the result of the ST-1 with α = tan−1 2 and ∆y = ∆x. We do not see too

much difference between the results for cφ = 0.5 and cφ = 0.25. Again, the basic flux-CT

method is one of the best.

One might think that (34), which corresponds to cφ = 0.5, would be better than (33),

which corresponds to cφ = 0.25, when the shock interface aligns with one of the axes. We

tested ST-1 with α = 0, which means the shock interface aligns with y-coordinate. The

results are shown in Fig.4.13. It seems that (34) is more diffusive for E1, E2, and E3. It is
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α = 0. Output is at t = 0.08.

surprised to find that (34) is less diffusive for E4. The result of E3 with cφ = 0.25 is almost

the same as that of E4 with cφ = 0.5, which is the best among all of the tests.

We also ran the test for the problem ST-2 and found the results were qualitatively the

same for different Eavg and different cφ evaluations. Fig.4.14 shows the results for ST-3

with α = tan−1 2. E1 resolves the compound structure very well. However there are some

oscillations after the compound. The basic flux-CT scheme (E3) also resolves the compound

very well, and cφ = 0.5 improve the results a little bit. E3 with cφ = 0.5 are the best among

all of the tests.

Fig.4.15 shows the results for ST-4 with α = tan−1 2. The energy fix (4) is used. We

observed from the plots and the overall error estimates in Table 3 that the E1 and E2 have

better results with cφ = 0.5 than with cφ = 0.25, and E3 and E4 have better results with

cφ = 0.25 than with cφ = 0.5. We also tested this problem with Balsara’s modified flux-CT

scheme. The original modified flux-CT scheme (Balsara 2003) uses (31) and (35). Here we

also tested (35) (denoted as φ3 in the Fig.4.16) combined with other Eavg evaluations. The

results are shown in Fig.4.16. (35) requires twice as many Riemann solutions as a standard

Godunov method. However, the results are worse than those for the original flux-CT method.
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Fig. 4.14.— Results for shock-tube problem ST-3. Only the compound structure is shown. α = tan−1 2.

∆y = 0.5∆x. Output is at t = 0.1/
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We also tested it for other shock-tube problems and found no improvement at all.

For a clear comparison, the numerical errors defined as (36) are listed in Table 3.

4.2. The Blast problem

This test problem was first introduced in Balsara and Spicer (Balsara & Spicer 1999).

It was about a spherical strong fast magneto-sonic shock propagates through a low-β (β =

0.000251) ambient plasma. It was used as an example in (Balsara 2003) to show the advan-

tages of the divergence-free reconstruction (7) and (8). We tested this problem to compare

different UCT schemes and reconstructions. The set-up of the problem is exactly the same

described in (Balsara & Spicer 1999). 200 × 200 grid is used. The final time is 0.01. The

results are shown in Fig.4.17.

It was pointed out in (Balsara 2003) that the divergence-free reconstruction (BS2 or

BS3) helped overcome some of the problems that arise in maintaining the positivity of the

pressure variable in low-β simulation like this one. However, we find the energy-fix (4) is
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Fig. 4.15.— Results for shock-tube problem ST-4. α = tan−1 2. Output is at t = 0.06/
√
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Table 3: Numerical errors of the different UCT schemes for the four rotated shock-tube

problems.
cφ EMF ST-1,α=45◦ ST-1∗,α=63.4◦ ST-1,α=0 ST-3 ST-4

E1 0.0290 0.0355 0.0473 0.0232 0.0331

0.25 E2 0.0205 0.0352 0.0473 0.0241 0.0157

E3 0.0177 0.0336 0.0141 0.0209 0.0131

E4 0.0191 0.0341 0.0673 0.0198 0.0170

E1 0.0360 0.0361 0.0573 0.0215 0.0123

0.5 E2 0.0205 0.0357 0.0573 0.0216 0.0143

E3 0.0178 0.0349 0.0322 0.0189 0.0250

E4 0.0179 0.0353 0.0132 0.0232 0.0269
ST-1∗ represents ∆y = ∆x case.

still needed despite the divergence-free reconstruction. We believe it is because of the energy

fix, not the divergence-free reconstruction, the positivity of the pressure is maintained. It is

clear in Fig.4.17 that both divergence free reconstructions indeed improve the results of the

original flux-CT scheme, and there is no qualitative difference between the results of BS2

and BS3. We also tested this problem by using different UCT schemes. All of them failed

due to the negative pressure when cφ = 0.5 is used. With cφ = 0.25, only E3, which is also

BS scheme, and E4 worked with CFL number of 0.7 (the result is shown in Fig.4.17). E1

and E2 worked with CFL=0.4 and their results (not shown here) are almost identical.

Fig.4.18 shows the total energy deviation. Since the periodic boundary conditions are

used, the total energy should be conserved physically. However, due to the energy-fix, the

total energy is not conserved. Fig.4.18 shows that the BS2 reconstruction is the best in

preserving energy for this problem. We have solved this problem with an eight-wave model

of (Janhunen 2000), which adds the divergence source term only to the induction equations.

The solution has a lot of noise (see Fig.4.19) due to the numerical magnetic monopole, despite

that the energy is conserved. We also tested another approach which sets the pressure to

a minimal value once it becomes negative. The divergence-free condition can be preserved

by the flux-CT method and the energy is also preserved by the Godunov method. However,

the results are not very good (see Fig.4.19).

Some might think that the energy conservation would be better if the energy fix is

applied only when the pressure becomes negative. We tested it for both the ST-4 and the

blast problems. It turns out that the results are even worse. So it is not recommended.

We have tested the schemes with other 2D examples, such as the rotor problem of

(Balsara & Spicer 1999) and shock-cloud interaction problem of (Dai & Woodwood 1998).

There is no noticeable difference between the results of all the CT schemes. The results of

the modified flux-CT are no better than those of the original flux-CT scheme.



– 28 –

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

flux−CT with pre
min

= 1e−5

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

eight−wave model

Fig. 4.19.— Results for blast problem. 30 contours between 0.1 and 4.0 are used.

5. Conclusions

After compared the results, we obtain the following observations for the UCT schemes:

• The more complex divergence-free reconstruction of (Balsara 2000) is no better than

the simple divergence-free reconstruction of (Londrillo & Del Zanna 2003) in most

cases.

• Only when the energy fix is used for low-β plasma, the divergence-free reconstruction

is better than the standard limited reconstruction of the cell-centered values.

• The flux-CT method is one of the best among all of the UCT methods.

• Despite more computations, the more complex modified flux-CT scheme of (Balsara

2003) is no better than the original flux-CT scheme of (Balsara & Spicer 1999).

• The arithmetic averaging of the face-interface values to obtain the cell-centered values

for magnetic field is as good as the more complex volume-average cell-centered values

for the second order method.

It is important to notice that the divergence-free reconstruction is not needed for CT scheme

for most of the problems, because the dimensional splitting solvers, which have been widely

used and more efficient, cannot have this property.

For low-β plasma, the CT methods may result in a negative pressure. If the energy-fix

is used, the overall conservation will be destroyed and wrong state could be generated. This

is one of the disadvantages of the CT methods. We are exploring to construct a CT method

that does not need the energy-fix.
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We should point out that our test is only for the second order scheme with constrained

transport for magnetic field. It may not be valid for other higher order schemes. However,

constructing a higher order scheme requires a higher order reconstruction for the magnetic

fields. The divergence-free reconstruction described in (Balsara 2000) and (Londrillo & Del

Zanna 2003) is of only the second order accuracy.

Although our tests and descriptions are based on Roe’s type Riemann solver, We also

tested the examples using other Riemann solvers, such as HLL, HLLC and hybrid (combined

Roe’s and HLL) Riemann solver, and we have drawn the same conclusions.

Although the HLL scheme(Janhunen 2000) can preserve the positivity, this property

is lost when HLL is combined with any CT scheme. Therefore, for the low-β plasma, the

energy fix (4) is still needed.
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